Difference between revisions of "Limit of (1/Gamma(c))*2F1(a,b;c;z) as c approaches -m"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\displaystyle\lim_{c \rightarrow -m} \dfrac{1}{\Gamma(c)} {}_2F_1(a,b;c;z)= \dfrac{(a)_{m+1} (b)_{m+1}}{(m+1)!} z^{m+1} {}_2F_1 \lef...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Hypergeometric 2F1|next=2F1(1,1;2;z)=-log(1-z)/z}}: 15.1.2
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Hypergeometric 2F1|next=2F1(1,1;2;z)=-log(1-z)/z}}: $15.1.2$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 23:15, 12 July 2016

Theorem

The following formula holds: $$\displaystyle\lim_{c \rightarrow -m} \dfrac{1}{\Gamma(c)} {}_2F_1(a,b;c;z)= \dfrac{(a)_{m+1} (b)_{m+1}}{(m+1)!} z^{m+1} {}_2F_1 \left( a+m+1, b+m+1; m+2; z \right),$$ where $\Gamma$ denotes the gamma function, $(a)_{m+1}$ denotes the Pochhammer symbol, and ${}_2F_1$ denotes the hypergeometric 2F1.

Proof

References