Difference between revisions of "2F1(1/2,1/2;3/2;z^2)=arcsin(z)/z"

From specialfunctionswiki
Jump to: navigation, search
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=2F1(1/2,1;3/2;-z^2)=arctan(z)/z|next=findme}}: $15.1.6$
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=2F1(1/2,1;3/2;-z^2)=arctan(z)/z|next=Sqrt(1-z^2)2F1(1,1;3/2;z^2)=arcsin(z)/z}}: $15.1.6$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 23:18, 12 July 2016

Theorem

The following formula holds: $${}_2F_1 \left( \dfrac{1}{2}, \dfrac{1}{2}; \dfrac{3}{2}; z^2 \right) = \dfrac{\arcsin(z)}{z},$$ where ${}_2F_1$ denotes the hypergeometric 2F1 and $\arcsin$ denotes the inverse sine.

Proof

References