Difference between revisions of "Euler product for Riemann zeta"
From specialfunctionswiki
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|The Zeta-Function of Riemann|1930|Edward Charles Titchmarsh|prev=Riemann zeta|next=Series for log(riemann zeta) over primes}}: § Introduction (2) | + | * {{BookReference|The Zeta-Function of Riemann|1930|Edward Charles Titchmarsh|prev=Riemann zeta|next=Series for log(riemann zeta) over primes}}: § Introduction $(2)$ |
* {{BookReference|Higher Transcendental Functions Volume II|1953|Harry Bateman|prev=Riemann zeta|next=}}: pg. $170$ | * {{BookReference|Higher Transcendental Functions Volume II|1953|Harry Bateman|prev=Riemann zeta|next=}}: pg. $170$ | ||
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Riemann zeta|next=}}: $23.2.2$ | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Riemann zeta|next=}}: $23.2.2$ |
Revision as of 01:34, 13 July 2016
Theorem
The following formula holds for $\mathrm{Re}(z)>1$: $$\zeta(z)=\displaystyle\prod_{p \mathrm{\hspace{2pt} prime}} \dfrac{1}{1-p^{-z}},$$ where $\zeta$ is the Riemann zeta function.
Proof
References
- 1930: Edward Charles Titchmarsh: The Zeta-Function of Riemann ... (previous) ... (next): § Introduction $(2)$
- 1953: Harry Bateman: Higher Transcendental Functions Volume II ... (previous): pg. $170$
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous): $23.2.2$