Difference between revisions of "Euler product for Riemann zeta"

From specialfunctionswiki
Jump to: navigation, search
Line 9: Line 9:
 
* {{BookReference|The Zeta-Function of Riemann|1930|Edward Charles Titchmarsh|prev=Riemann zeta|next=Series for log(riemann zeta) over primes}}: § Introduction $(2)$
 
* {{BookReference|The Zeta-Function of Riemann|1930|Edward Charles Titchmarsh|prev=Riemann zeta|next=Series for log(riemann zeta) over primes}}: § Introduction $(2)$
 
* {{BookReference|Higher Transcendental Functions Volume II|1953|Harry Bateman|prev=Riemann zeta|next=}}: pg. $170$
 
* {{BookReference|Higher Transcendental Functions Volume II|1953|Harry Bateman|prev=Riemann zeta|next=}}: pg. $170$
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Riemann zeta|next=}}: $23.2.2$
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Riemann zeta|next=findme}}: $23.2.2$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Revision as of 01:35, 13 July 2016

Theorem

The following formula holds for $\mathrm{Re}(z)>1$: $$\zeta(z)=\displaystyle\prod_{p \mathrm{\hspace{2pt} prime}} \dfrac{1}{1-p^{-z}},$$ where $\zeta$ is the Riemann zeta function.

Proof

References