Difference between revisions of "Exponential integral E"

From specialfunctionswiki
Jump to: navigation, search
Line 22: Line 22:
  
 
=References=
 
=References=
[http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_228.htm Exponential Integral and Related Functions]
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=findme}}: $5.1.1$
  
 
{{:*-integral functions footer}}
 
{{:*-integral functions footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 18:32, 7 August 2016

The exponential integral functions $E_n$ are defined for $\left|\mathrm{arg \hspace{2pt}}z\right|<\pi$ by $$E_1(z) = \displaystyle\int_1^{\infty} \dfrac{e^{-t}}{t} \mathrm{d}t,$$ and $$E_n(z)=\displaystyle\int_1^{\infty} \dfrac{e^{-zt}}{t^n} \mathrm{d}t.$$

Properties

Relationship between the exponential integral and upper incomplete gamma function

Videos

Laplace transform of exponential integral

References

$\ast$-integral functions