Difference between revisions of "Exponential integral E"

From specialfunctionswiki
Jump to: navigation, search
Line 20: Line 20:
 
=Videos=
 
=Videos=
 
[https://www.youtube.com/watch?v=TppV_yDY3EQ Laplace transform of exponential integral]<br />
 
[https://www.youtube.com/watch?v=TppV_yDY3EQ Laplace transform of exponential integral]<br />
 +
 +
=See Also=
 +
[[Exponential integral Ei]]
  
 
=References=
 
=References=

Revision as of 18:34, 7 August 2016

The exponential integral functions $E_n$ are defined for $\left|\mathrm{arg \hspace{2pt}}z\right|<\pi$ by $$E_1(z) = \displaystyle\int_1^{\infty} \dfrac{e^{-t}}{t} \mathrm{d}t,$$ and $$E_n(z)=\displaystyle\int_1^{\infty} \dfrac{e^{-zt}}{t^n} \mathrm{d}t.$$

Properties

Relationship between the exponential integral and upper incomplete gamma function

Videos

Laplace transform of exponential integral

See Also

Exponential integral Ei

References

$\ast$-integral functions