Difference between revisions of "Exponential integral Ei"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
The exponential integral $\mathrm{Ei}$ is defined by
+
The exponential integral $\mathrm{Ei}$ is defined for $x>0$ by
$$\mathrm{Ei}(z) = \int_{-\infty}^x \dfrac{e^t}{t} \mathrm{d}t, \quad \left|\mathrm{arg}(-z) \right|<\pi.$$
+
$$\mathrm{Ei}(x) = \int_{-\infty}^x \dfrac{e^t}{t} \mathrm{d}t.$$
  
  

Revision as of 18:40, 7 August 2016

The exponential integral $\mathrm{Ei}$ is defined for $x>0$ by $$\mathrm{Ei}(x) = \int_{-\infty}^x \dfrac{e^t}{t} \mathrm{d}t.$$


Properties

Relationship between logarithmic integral and exponential integral
Exponential integral Ei series
Relationship between exponential integral Ei, cosine integral, and sine integral

See Also

Exponential integral E

References

On certain definite integrals involving the exponential-integral - J.W.L. Glaisher

$\ast$-integral functions