Difference between revisions of "Digamma functional equation"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\psi(z)=\psi(z+1)-\dfrac{1}{z},$$ where $\psi$ denotes the digamma function. ==Proof== ==References== * {{BookReference|Higher...")
 
Line 7: Line 7:
 
==References==
 
==References==
 
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=findme|next=Digamma at n+1}}: $\S 1.7 (8)$
 
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=findme|next=Digamma at n+1}}: $\S 1.7 (8)$
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Digamma at n+1/2|next=findme}}: $6.3.5$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Revision as of 00:53, 9 August 2016

Theorem

The following formula holds: $$\psi(z)=\psi(z+1)-\dfrac{1}{z},$$ where $\psi$ denotes the digamma function.

Proof

References