Difference between revisions of "Digamma functional equation"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\psi(z)=\psi(z+1)-\dfrac{1}{z},$$ where $\psi$ denotes the digamma function. ==Proof== ==References== * {{BookReference|Higher...") |
|||
Line 7: | Line 7: | ||
==References== | ==References== | ||
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=findme|next=Digamma at n+1}}: $\S 1.7 (8)$ | * {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=findme|next=Digamma at n+1}}: $\S 1.7 (8)$ | ||
+ | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Digamma at n+1/2|next=findme}}: $6.3.5$ | ||
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Revision as of 00:53, 9 August 2016
Theorem
The following formula holds: $$\psi(z)=\psi(z+1)-\dfrac{1}{z},$$ where $\psi$ denotes the digamma function.
Proof
References
- 1953: Harry Bateman: Higher Transcendental Functions Volume I ... (previous) ... (next): $\S 1.7 (8)$
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $6.3.5$