Difference between revisions of "Falling factorial"

From specialfunctionswiki
Jump to: navigation, search
 
Line 1: Line 1:
The falling factorial $x^{\underline{k}}$ for nonnegative [[integer]] $k$ is given by
+
The falling factorial $x^{\underline{k}}$ for positive [[integer]] $k$ is given by
 
$$x^{\underline{k}}=x(x-1)\ldots (x-k+1).$$
 
$$x^{\underline{k}}=x(x-1)\ldots (x-k+1).$$
 
If $k$ is not an integer, we use the following formula to interpret $x^{\underline{k}}$:
 
If $k$ is not an integer, we use the following formula to interpret $x^{\underline{k}}$:

Latest revision as of 12:27, 11 August 2016

The falling factorial $x^{\underline{k}}$ for positive integer $k$ is given by $$x^{\underline{k}}=x(x-1)\ldots (x-k+1).$$ If $k$ is not an integer, we use the following formula to interpret $x^{\underline{k}}$: $$x^{\underline{k}} = \dfrac{\Gamma(x+1)}{\Gamma(x-k+1)},$$ where $\Gamma$ denotes the gamma function.

Properties

References