Difference between revisions of "Falling factorial"
From specialfunctionswiki
Line 1: | Line 1: | ||
− | The falling factorial $x^{\underline{k}}$ for | + | The falling factorial $x^{\underline{k}}$ for positive [[integer]] $k$ is given by |
$$x^{\underline{k}}=x(x-1)\ldots (x-k+1).$$ | $$x^{\underline{k}}=x(x-1)\ldots (x-k+1).$$ | ||
If $k$ is not an integer, we use the following formula to interpret $x^{\underline{k}}$: | If $k$ is not an integer, we use the following formula to interpret $x^{\underline{k}}$: |
Latest revision as of 12:27, 11 August 2016
The falling factorial $x^{\underline{k}}$ for positive integer $k$ is given by $$x^{\underline{k}}=x(x-1)\ldots (x-k+1).$$ If $k$ is not an integer, we use the following formula to interpret $x^{\underline{k}}$: $$x^{\underline{k}} = \dfrac{\Gamma(x+1)}{\Gamma(x-k+1)},$$ where $\Gamma$ denotes the gamma function.