Difference between revisions of "Arccosh"
From specialfunctionswiki
Line 1: | Line 1: | ||
+ | The inverse hyperbolic cosine function $\mathrm{arccosh}$ is the [[inverse function]] of the [[hyperbolic cosine]] function. It may be defined by | ||
+ | $$\mathrm{arccosh}(z)=\log \left(z + \sqrt{1+z^2} \right).$$ | ||
+ | |||
<div align="center"> | <div align="center"> | ||
<gallery> | <gallery> |
Revision as of 00:16, 16 September 2016
The inverse hyperbolic cosine function $\mathrm{arccosh}$ is the inverse function of the hyperbolic cosine function. It may be defined by $$\mathrm{arccosh}(z)=\log \left(z + \sqrt{1+z^2} \right).$$
Domain coloring of $\mathrm{arccosh}$.