Difference between revisions of "Arccosh"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The inverse hyperbolic cosine function $\mathrm{arccosh}$ is the [[inverse function]] of the [[hyperbolic cosine]] function. It may be defined by
 
The inverse hyperbolic cosine function $\mathrm{arccosh}$ is the [[inverse function]] of the [[hyperbolic cosine]] function. It may be defined by
$$\mathrm{arccosh}(z)=\log \left(z + \sqrt{1+z^2} \right).$$
+
$$\mathrm{arccosh}(z)=\log \left(z + \sqrt{1+z^2} \right),$$
 +
where $\log$ denotes the [[logarithm]].
  
 
<div align="center">
 
<div align="center">

Revision as of 00:22, 16 September 2016

The inverse hyperbolic cosine function $\mathrm{arccosh}$ is the inverse function of the hyperbolic cosine function. It may be defined by $$\mathrm{arccosh}(z)=\log \left(z + \sqrt{1+z^2} \right),$$ where $\log$ denotes the logarithm.

Properties

Derivative of arccosh

See Also

Arccos
Cosh
Cosine

Inverse hyperbolic trigonometric functions