Difference between revisions of "Arctanh"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 +
The inverse hyperbolic tangent function $\mathrm{arctanh}$ is the [[inverse function]] of the [[tanh|hyperbolic tangent]] function. It may be defined by
 +
$$\mathrm{arctanh}(z) = \dfrac{\log(1+z)}{2} - \dfrac{\log(1-x)}{2},$$
 +
where $\log$ denotes the [[logarithm]].
  
 
<div align="center">
 
<div align="center">
Line 8: Line 11:
  
 
=Properties=
 
=Properties=
[[Derivative of Legendre chi]]
+
[[Derivative of arctanh]] <br />
 +
[[Derivative of Legendre chi]] <br />
 +
 
 +
=See also=
 +
[[Arctan]] <br />
 +
[[Tanh]] <br />
 +
[[Tangent]] <br />
  
 
{{:Inverse hyperbolic trigonometric functions footer}}
 
{{:Inverse hyperbolic trigonometric functions footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 00:47, 16 September 2016

The inverse hyperbolic tangent function $\mathrm{arctanh}$ is the inverse function of the hyperbolic tangent function. It may be defined by $$\mathrm{arctanh}(z) = \dfrac{\log(1+z)}{2} - \dfrac{\log(1-x)}{2},$$ where $\log$ denotes the logarithm.

Properties

Derivative of arctanh
Derivative of Legendre chi

See also

Arctan
Tanh
Tangent

Inverse hyperbolic trigonometric functions