Difference between revisions of "Arccoth"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 +
The inverse hyperbolic cotangent $\mathrm{arccoth}$ is the [[inverse function]] of the [[coth|hyperbolic cotangent]] function. It may be defined in terms of the [[arctanh|inverse hyperbolic tangent]] function by the following formula:
 +
$$\mathrm{arccoth}(z)=\mathrm{arctanh} \left( \dfrac{1}{z} \right).$$
 +
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>

Revision as of 01:33, 16 September 2016

The inverse hyperbolic cotangent $\mathrm{arccoth}$ is the inverse function of the hyperbolic cotangent function. It may be defined in terms of the inverse hyperbolic tangent function by the following formula: $$\mathrm{arccoth}(z)=\mathrm{arctanh} \left( \dfrac{1}{z} \right).$$

Properties

Derivative of arccoth

Inverse hyperbolic trigonometric functions