Difference between revisions of "Derivative of arccoth"
From specialfunctionswiki
Line 2: | Line 2: | ||
The following formula holds: | The following formula holds: | ||
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccoth}(z) = \dfrac{1}{z^2-1},$$ | $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccoth}(z) = \dfrac{1}{z^2-1},$$ | ||
− | where $\mathrm{arccoth}$ | + | where $\mathrm{arccoth}$ denotes the [[arccoth|inverse hyperbolic cotangent]]. |
==Proof== | ==Proof== |
Latest revision as of 01:38, 16 September 2016
Theorem
The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccoth}(z) = \dfrac{1}{z^2-1},$$ where $\mathrm{arccoth}$ denotes the inverse hyperbolic cotangent.