Difference between revisions of "Derivative of arccoth"

From specialfunctionswiki
Jump to: navigation, search
 
Line 2: Line 2:
 
The following formula holds:
 
The following formula holds:
 
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccoth}(z) = \dfrac{1}{z^2-1},$$
 
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccoth}(z) = \dfrac{1}{z^2-1},$$
where $\mathrm{arccoth}$ denote the [[arccoth|inverse hyperbolic cotangent]].
+
where $\mathrm{arccoth}$ denotes the [[arccoth|inverse hyperbolic cotangent]].
  
 
==Proof==
 
==Proof==

Latest revision as of 01:38, 16 September 2016

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccoth}(z) = \dfrac{1}{z^2-1},$$ where $\mathrm{arccoth}$ denotes the inverse hyperbolic cotangent.

Proof

References