Difference between revisions of "Arccoth"
From specialfunctionswiki
Line 1: | Line 1: | ||
− | The inverse hyperbolic cotangent $\mathrm{arccoth}$ is the [[inverse function]] of the [[coth|hyperbolic cotangent]] function. It may be defined | + | The inverse hyperbolic cotangent $\mathrm{arccoth}$ is the [[inverse function]] of the [[coth|hyperbolic cotangent]] function. It may be defined by the following formula: |
− | $$\mathrm{arccoth}(z)=\mathrm{arctanh} \left( \dfrac{1}{z} \right) | + | $$\mathrm{arccoth}(z)=\mathrm{arctanh} \left( \dfrac{1}{z} \right),$$ |
+ | where $\mathrm{arctanh}$ denotes the [[arctanh|inverse hyperbolic tangent]]. | ||
<div align="center"> | <div align="center"> |
Revision as of 01:39, 16 September 2016
The inverse hyperbolic cotangent $\mathrm{arccoth}$ is the inverse function of the hyperbolic cotangent function. It may be defined by the following formula: $$\mathrm{arccoth}(z)=\mathrm{arctanh} \left( \dfrac{1}{z} \right),$$ where $\mathrm{arctanh}$ denotes the inverse hyperbolic tangent.
Domain coloring of $\mathrm{arccoth}$.