Difference between revisions of "Arccoth"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
The inverse hyperbolic cotangent $\mathrm{arccoth}$ is the [[inverse function]] of the [[coth|hyperbolic cotangent]] function. It may be defined in terms of the [[arctanh|inverse hyperbolic tangent]] function by the following formula:
+
The inverse hyperbolic cotangent $\mathrm{arccoth}$ is the [[inverse function]] of the [[coth|hyperbolic cotangent]] function. It may be defined by the following formula:
$$\mathrm{arccoth}(z)=\mathrm{arctanh} \left( \dfrac{1}{z} \right).$$
+
$$\mathrm{arccoth}(z)=\mathrm{arctanh} \left( \dfrac{1}{z} \right),$$
 +
where $\mathrm{arctanh}$ denotes the [[arctanh|inverse hyperbolic tangent]].
  
 
<div align="center">
 
<div align="center">

Revision as of 01:39, 16 September 2016

The inverse hyperbolic cotangent $\mathrm{arccoth}$ is the inverse function of the hyperbolic cotangent function. It may be defined by the following formula: $$\mathrm{arccoth}(z)=\mathrm{arctanh} \left( \dfrac{1}{z} \right),$$ where $\mathrm{arctanh}$ denotes the inverse hyperbolic tangent.

Properties

Derivative of arccoth

Inverse hyperbolic trigonometric functions