Difference between revisions of "Derivative of the logarithm"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \log(z) = \dfrac{1}{z},$$ where $\log$ denotes the logarithm. ==Proof== By the definition, $$\l...") |
(No difference)
|
Revision as of 12:27, 17 September 2016
Theorem
The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \log(z) = \dfrac{1}{z},$$ where $\log$ denotes the logarithm.
Proof
By the definition, $$\log(z) = \displaystyle\int_1^z \dfrac{1}{z} \mathrm{d}z.$$ Using the fundamental theorem of calculus, $$\dfrac{\mathrm{d}}{\mathrm{d}z} \log(z) = \dfrac{1}{z},$$ as was to be shown.