Difference between revisions of "Error function is odd"

From specialfunctionswiki
Jump to: navigation, search
Line 3: Line 3:
 
$$\mathrm{erf}(-z)=-\mathrm{erf}(z),$$
 
$$\mathrm{erf}(-z)=-\mathrm{erf}(z),$$
 
where $\mathrm{erf}$ denotes the [[error function]] (i.e. $\mathrm{erf}$ is an [[odd function]]).
 
where $\mathrm{erf}$ denotes the [[error function]] (i.e. $\mathrm{erf}$ is an [[odd function]]).
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong>  █
+
==Proof==
</div>
 
</div>
 
  
 
==References==
 
==References==
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Erf of conjugate is conjugate of erf}}: 7.1.9
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Erf of conjugate is conjugate of erf}}: 7.1.9
 +
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Revision as of 03:53, 3 October 2016

Theorem

The following formula holds: $$\mathrm{erf}(-z)=-\mathrm{erf}(z),$$ where $\mathrm{erf}$ denotes the error function (i.e. $\mathrm{erf}$ is an odd function).

Proof

References