Difference between revisions of "Dirichlet L-function"
From specialfunctionswiki
Line 1: | Line 1: | ||
Let $\chi$ be a [[Dirichlet character]]. The Dirichlet $L$-function associated with $\chi$ is | Let $\chi$ be a [[Dirichlet character]]. The Dirichlet $L$-function associated with $\chi$ is | ||
− | $$L(\chi | + | $$L(s,\chi)=\displaystyle\sum_n \dfrac{\chi(n)}{n^s} = \displaystyle\prod_{p \hspace{2pt} \mathrm{prime}} \dfrac{1}{1-\chi(p)p^{-s}}.$$ |
=References= | =References= |
Latest revision as of 19:27, 17 November 2016
Let $\chi$ be a Dirichlet character. The Dirichlet $L$-function associated with $\chi$ is $$L(s,\chi)=\displaystyle\sum_n \dfrac{\chi(n)}{n^s} = \displaystyle\prod_{p \hspace{2pt} \mathrm{prime}} \dfrac{1}{1-\chi(p)p^{-s}}.$$