Difference between revisions of "Square of i"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$i^2=-1,$$ where $i$ denotes the imaginary number. ==Proof== From the definition of $i$, $$i=\sqrt{-1}.$$ Squaring both sides sh...") |
(No difference)
|
Latest revision as of 03:34, 8 December 2016
Theorem
The following formula holds: $$i^2=-1,$$ where $i$ denotes the imaginary number.
Proof
From the definition of $i$, $$i=\sqrt{-1}.$$ Squaring both sides shows $$i^2 = \left( \sqrt{-1} \right)^2 = -1,$$ as was to be shown.