Difference between revisions of "Chi"

From specialfunctionswiki
Jump to: navigation, search
Line 9: Line 9:
 
</gallery>
 
</gallery>
 
</div>
 
</div>
 +
 +
=Properties=
 +
[[Derivative of chi]]<br />
 +
[[Antiderivative of chi]]<br />
  
 
{{:*-integral functions footer}}
 
{{:*-integral functions footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 23:41, 10 December 2016

The hyperbolic cosine integral $\mathrm{Chi} \colon (0,\infty) \rightarrow \mathbb{R}$ is defined by the formula $$\mathrm{Chi}(z)=-\displaystyle\int_z^{\infty} \dfrac{\mathrm{cosh}(t)}{t} \mathrm{d}t,$$ where $\cosh$ denotes the hyperbolic cosine.

Properties

Derivative of chi
Antiderivative of chi

$\ast$-integral functions