Difference between revisions of "Chi"
From specialfunctionswiki
Line 9: | Line 9: | ||
</gallery> | </gallery> | ||
</div> | </div> | ||
+ | |||
+ | =Properties= | ||
+ | [[Derivative of chi]]<br /> | ||
+ | [[Antiderivative of chi]]<br /> | ||
{{:*-integral functions footer}} | {{:*-integral functions footer}} | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Revision as of 23:41, 10 December 2016
The hyperbolic cosine integral $\mathrm{Chi} \colon (0,\infty) \rightarrow \mathbb{R}$ is defined by the formula $$\mathrm{Chi}(z)=-\displaystyle\int_z^{\infty} \dfrac{\mathrm{cosh}(t)}{t} \mathrm{d}t,$$ where $\cosh$ denotes the hyperbolic cosine.
Domain coloring of $\mathrm{Chi}$.
Properties
Derivative of chi
Antiderivative of chi