Difference between revisions of "Dirichlet beta"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
The Dirichlet $\beta$ function is defined by
 
The Dirichlet $\beta$ function is defined by
$$\beta(x) = \displaystyle\sum_{k=0}^{\infty} (-1)^k (2k+1)^{-x} = 2^{-x} \Phi \left(-1,x,\dfrac{1}{2} \right),$$
+
$$\beta(x) = \displaystyle\sum_{k=0}^{\infty} (-1)^k (2k+1)^{-x}.$$
where $\Phi$ denotes the [[Lerch transcendent]].
 
  
  
Line 14: Line 13:
 
=Properties=
 
=Properties=
 
[[Catalan's constant using Dirichlet beta]]<br />
 
[[Catalan's constant using Dirichlet beta]]<br />
 +
[[Dirichlet beta in terms of Lerch transcendent]]<br />
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 00:51, 11 December 2016

The Dirichlet $\beta$ function is defined by $$\beta(x) = \displaystyle\sum_{k=0}^{\infty} (-1)^k (2k+1)^{-x}.$$


Properties

Catalan's constant using Dirichlet beta
Dirichlet beta in terms of Lerch transcendent