Difference between revisions of "Dirichlet beta"

From specialfunctionswiki
Jump to: navigation, search
 
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
The Dirichlet $\beta$ function is defined by
 
The Dirichlet $\beta$ function is defined by
$$\beta(x) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^x}.$$
+
$$\beta(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^z}.$$
  
  

Latest revision as of 00:54, 11 December 2016

The Dirichlet $\beta$ function is defined by $$\beta(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^z}.$$


Properties

Catalan's constant using Dirichlet beta
Dirichlet beta in terms of Lerch transcendent