Difference between revisions of "Q-exponential E sub q"

From specialfunctionswiki
Jump to: navigation, search
(References)
Line 14: Line 14:
  
 
=References=
 
=References=
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=findme|next=Meromorphic continuation of q-exponential E sub q}}: (6.150)
+
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=findme|next=Meromorphic continuation of q-exponential E sub q}}: ($6.150$)
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 07:39, 18 December 2016

If $|q|>1$ or the pair $0 < |q| <1$ and $|z| < \dfrac{1}{|1-q|}$ hold, then the $q$-exponential $E_q$ is $$E_q(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{[k]_q!},$$ where $[k]_q!$ denotes the $q$-factorial.

Properties

Meromorphic continuation of q-exponential E sub q
Q-difference equation for q-exponential E sub q

See also

q-Cos
q-exponential E sub 1/q
q-Sin

References