Difference between revisions of "Q-number"

From specialfunctionswiki
Jump to: navigation, search
Line 12: Line 12:
  
 
=References=
 
=References=
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=findme|next=q-number when a=n is a natural number}}: ($6.1$)
+
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=findme|next=q-number when a=n is a natural number}}: ($6.1$) (calls $[a]_q$ $\{a\}_q)
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 08:06, 18 December 2016

Let $a \in \mathbb{C}$ and $q \in \mathbb{C} \setminus \{0,1\}$. Define the $q$-number $[a]_q$ by $$[a]_q=\dfrac{1-q^a}{1-q}.$$

Properties

$q$-number when $a=n$ is a natural number
$q$-number of a negative
1/q-number as a q-number

See Also

$q$-factorial


References