Difference between revisions of "Q-shifted factorial"
From specialfunctionswiki
(Created page with "The $q$-shifted factorial $(a;q)_n$ is defined by the formula $$(a;q)_n=\displaystyle\prod_{k=0}^{n-1} 1-aq^{k-1}.$$ =References= Category:SpecialFunction") |
|||
Line 1: | Line 1: | ||
The $q$-shifted factorial $(a;q)_n$ is defined by the formula | The $q$-shifted factorial $(a;q)_n$ is defined by the formula | ||
− | $$(a;q)_n=\displaystyle\prod_{k=0}^{n-1} 1-aq^{k-1}.$$ | + | $$(a;q)_n=\displaystyle\prod_{k=0}^{n-1} 1-aq^{k-1}=(1-a)(1-aq)(1-aq^2)\ldots(1-aq^{n-1}).$$ |
=References= | =References= | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Revision as of 20:55, 18 December 2016
The $q$-shifted factorial $(a;q)_n$ is defined by the formula $$(a;q)_n=\displaystyle\prod_{k=0}^{n-1} 1-aq^{k-1}=(1-a)(1-aq)(1-aq^2)\ldots(1-aq^{n-1}).$$