Difference between revisions of "Rodrigues formula for Meixner polynomial"

From specialfunctionswiki
Jump to: navigation, search
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Rodrigues formula for Meixner polynomial|Theorem]]:</strong> ([[Rodrigues Formula]]) The following formula holds:
+
The following formula holds:
 
$$\dfrac{\beta^{\overline{x}}c^x}{x!} M_n(x;\beta,c)= \nabla^n \left[ \dfrac{(\beta+n)^{\overline{x}}}{x!}c^x \right],$$
 
$$\dfrac{\beta^{\overline{x}}c^x}{x!} M_n(x;\beta,c)= \nabla^n \left[ \dfrac{(\beta+n)^{\overline{x}}}{x!}c^x \right],$$
 
where $\nabla$ denotes the backwards difference operator $\nabla f = f(x)-f(x-1)$, $\beta^{\overline{x}}$ denotes a [[rising factorial]] and $M_n$ is a [[Meixner polynomial]].
 
where $\nabla$ denotes the backwards difference operator $\nabla f = f(x)-f(x-1)$, $\beta^{\overline{x}}$ denotes a [[rising factorial]] and $M_n$ is a [[Meixner polynomial]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 02:39, 21 December 2016

Theorem

The following formula holds: $$\dfrac{\beta^{\overline{x}}c^x}{x!} M_n(x;\beta,c)= \nabla^n \left[ \dfrac{(\beta+n)^{\overline{x}}}{x!}c^x \right],$$ where $\nabla$ denotes the backwards difference operator $\nabla f = f(x)-f(x-1)$, $\beta^{\overline{x}}$ denotes a rising factorial and $M_n$ is a Meixner polynomial.

Proof

References