Difference between revisions of "Spherical Hankel h (1)"

From specialfunctionswiki
Jump to: navigation, search
 
Line 5: Line 5:
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>
File:Complex spherical hankel h1 sub 1.png|[[Domain coloring]] of [[analytic continuation]] of $h_1^{(1)}(z)$.
+
File:Complex spherical hankel h1 sub 1.png|[[Domain coloring]] of $h_1^{(1)}(z)$.
 
</gallery>
 
</gallery>
 
</div>
 
</div>

Latest revision as of 23:58, 22 December 2016

The spherical Hankel function $h_{\nu}^{(1)}$ is defined by $$h_{\nu}^{(1)}(z)=j_{\nu}(z)+iy_{\nu}(z),$$ where $j_{\nu}$ is the spherical Bessel function of the first kind and $y_{\nu}$ is the spherical Bessel function of the second kind.

See Also

Spherical Bessel $j$
Spherical Bessel $y$

Hankel functions