Difference between revisions of "Functional equation for Riemann zeta with cosine"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds for all $z \in \mathbb{C}$: $$\zeta(1-z)=2^{1-z} \pi^{-z} \cos \left( \dfrac{\pi z}{2} \right)\Gamma(z)\zeta(z),$$ where $\zeta$ denote...")
(No difference)

Revision as of 00:01, 18 March 2017

Theorem

The following formula holds for all $z \in \mathbb{C}$: $$\zeta(1-z)=2^{1-z} \pi^{-z} \cos \left( \dfrac{\pi z}{2} \right)\Gamma(z)\zeta(z),$$ where $\zeta$ denotes Riemann zeta, $\pi$ denotes pi, $\cos$ denotes cosine, and $\Gamma$ denotes gamma.

Proof

References