Difference between revisions of "Antiderivative of arcsin"

From specialfunctionswiki
Jump to: navigation, search
 
Line 2: Line 2:
 
The following formula holds:
 
The following formula holds:
 
$$\displaystyle\int \mathrm{arcsin}(z) \mathrm{d}z = \sqrt{1-z^2}+z\mathrm{arcsin}(z)+C,$$
 
$$\displaystyle\int \mathrm{arcsin}(z) \mathrm{d}z = \sqrt{1-z^2}+z\mathrm{arcsin}(z)+C,$$
where $\mathrm{arcsin}$ denotes the [[arcsin|inverse sine]] function.
+
where $\mathrm{arcsin}$ [[arcsin]].
  
 
==Proof==
 
==Proof==

Latest revision as of 22:45, 28 March 2017

Theorem

The following formula holds: $$\displaystyle\int \mathrm{arcsin}(z) \mathrm{d}z = \sqrt{1-z^2}+z\mathrm{arcsin}(z)+C,$$ where $\mathrm{arcsin}$ arcsin.

Proof

References