Difference between revisions of "L(n+1)L(n-1)-L(n)^2=5(-1)^(n+1)"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$L(n+1)L(n-1)-L(n)^2=5(-1)^{n+1},$$ where $L(n)$ denotes a Lucas number. ==Proof== ==References== * {{PaperReference|A Primer o...") |
|||
Line 2: | Line 2: | ||
The following formula holds: | The following formula holds: | ||
$$L(n+1)L(n-1)-L(n)^2=5(-1)^{n+1},$$ | $$L(n+1)L(n-1)-L(n)^2=5(-1)^{n+1},$$ | ||
− | where $L(n)$ denotes a [[Lucas number]]. | + | where $L(n)$ denotes a [[Lucas numbers|Lucas number]]. |
==Proof== | ==Proof== |
Revision as of 00:23, 25 May 2017
Theorem
The following formula holds: $$L(n+1)L(n-1)-L(n)^2=5(-1)^{n+1},$$ where $L(n)$ denotes a Lucas number.