Difference between revisions of "2F1(a,b;a+b+1/2;z)^2=3F2(2a,a+b,2b;a+b+1/2,2a+2b;z)"
From specialfunctionswiki
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=findme|next=}}: $4.2 (1)$ (formula incorrect in printed edition, but fixed in errata) | + | * {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=findme|next=0F1(;r;z)0F1(;s;z)=2F1(r/2+s/2, r/2+s/2-1/2;r,s,r+s-1;4z)}}: $4.2 (1)$ (formula incorrect in printed edition, but fixed in errata) |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Revision as of 19:58, 17 June 2017
Theorem
The following formula (known as Clausen's formula) holds: $${}_2F_1 \left( a,b;a+b +\dfrac{1}{2}; z \right)^2 = {}_3F_2 \left( 2a, a+b, 2b;a+b+\dfrac{1}{2}, 2a+2b;z \right),$$ where ${}_2F_1$ denotes hypergeometric 2F1 and ${}_3F_2$ denotes hypergeometric 3F2.
Proof
References
- 1953: Harry Bateman: Higher Transcendental Functions Volume I ... (previous) ... (next): $4.2 (1)$ (formula incorrect in printed edition, but fixed in errata)