Difference between revisions of "Hypergeometric pFq"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
The generalized hypergeometric function ${}_pF_q$ is defined by
 
The generalized hypergeometric function ${}_pF_q$ is defined by
$${}_pF_q(a_1,a_2,\ldots,a_p;b_1,\ldots,b_q;z)=\displaystyle\prod_{k=0}^{\infty} \dfrac{(a_1)_k(a_2)_k\ldots(a_p)_k}{(b_1)_k(b_2)_k\ldots(b_q)_k} \dfrac{z^k}{k!},$$
+
$${}_pF_q(a_1,a_2,\ldots,a_p;b_1,\ldots,b_q;z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(a_1)_k(a_2)_k\ldots(a_p)_k}{(b_1)_k(b_2)_k\ldots(b_q)_k} \dfrac{z^k}{k!},$$
 
where $(a_1)_k$ denotes the [[Pochhammer]] symbol.
 
where $(a_1)_k$ denotes the [[Pochhammer]] symbol.
  

Revision as of 21:42, 17 June 2017

The generalized hypergeometric function ${}_pF_q$ is defined by $${}_pF_q(a_1,a_2,\ldots,a_p;b_1,\ldots,b_q;z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(a_1)_k(a_2)_k\ldots(a_p)_k}{(b_1)_k(b_2)_k\ldots(b_q)_k} \dfrac{z^k}{k!},$$ where $(a_1)_k$ denotes the Pochhammer symbol.

Properties

Convergence of Hypergeometric pFq
Hypergeometric pFq terminates to a polynomial if an a_j is a nonpositive integer
Hypergeometric pFq diverges if a b_j is a nonpositive integer
Hypergeometric pFq converges for all z if p less than q+1
Hypergeometric pFq converges in the unit disk if p=q+1
Hypergeometric pFq diverges if p greater than q+1

Derivatives of Hypergeometric pFq
Differential equation for Hypergeometric pFq

Particular hypergeometric functions

Hypergeometric 0F0
Hypergeometric 1F0
Hypergeometric 0F1
Hypergeometric 1F1
Hypergeometric 2F1
Hypergeometric 1F2
Hypergeometric 2F0
Hypergeometric 2F1

Videos

Special functions - Hypergeometric series (9 March 2011)

External links

Notes on hypergeometric functions
Note on a hypergeometric series - Cayley

References

Hypergeometric functions
Hypergeometricthumb.png
Hypergeometric ${}_pF_q$