Difference between revisions of "B(x,y)B(x+y,z)=B(z,x)B(x+z,y)"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$B(x,y)B(x+y,z)=B(z,x)B(x+z,y),$$ where $B$ denotes the beta function. ==Proof== ==References== * {{BookReference|Higher Transc...") |
(No difference)
|
Revision as of 23:01, 24 June 2017
Theorem
The following formula holds: $$B(x,y)B(x+y,z)=B(z,x)B(x+z,y),$$ where $B$ denotes the beta function.
Proof
References
- 1953: Harry Bateman: Higher Transcendental Functions Volume I ... (previous) ... (next): $\S 1.5 (7)$