Difference between revisions of "Clausen sine"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
Let $s \in \mathbb{C}$. The Clausen sine function $\mathrm{Cl}_s \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined as the [[analytic continuation]] of the series
 
Let $s \in \mathbb{C}$. The Clausen sine function $\mathrm{Cl}_s \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined as the [[analytic continuation]] of the series
$$\mathrm{Cl}_s(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(kz)}{k^s},$$
+
$$\mathrm{Cl}_s(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(kz)}{k^z},$$
 
where $\sin$ denotes [[sine]].
 
where $\sin$ denotes [[sine]].
  

Revision as of 02:41, 25 June 2017

Let $s \in \mathbb{C}$. The Clausen sine function $\mathrm{Cl}_s \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined as the analytic continuation of the series $$\mathrm{Cl}_s(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(kz)}{k^z},$$ where $\sin$ denotes sine.

Properties

See also

Clausen cosine

References