Difference between revisions of "Riemann zeta"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "Consider the function $\zeta$ defined by the series $$\zeta(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{1}{n^z}.$$ <div class="toccolours mw-collapsible mw-collapsed" style=...")
 
Line 2: Line 2:
 
$$\zeta(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{1}{n^z}.$$
 
$$\zeta(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{1}{n^z}.$$
  
 +
==Convergence==
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>Proposition:</strong> If $\mathrm{Re} \hspace{2pt} z > 1$, then the series defining $\zeta(z)$ converges.
 
<strong>Proposition:</strong> If $\mathrm{Re} \hspace{2pt} z > 1$, then the series defining $\zeta(z)$ converges.

Revision as of 00:24, 15 July 2014

Consider the function $\zeta$ defined by the series $$\zeta(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{1}{n^z}.$$

Convergence

Proposition: If $\mathrm{Re} \hspace{2pt} z > 1$, then the series defining $\zeta(z)$ converges.

Proof: