Difference between revisions of "Cosh of a sum"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\cosh(z_1+z_2) = \cosh(z_1)\cosh(z_2) + \sinh(z_1)\sinh(z_2),$$ where $\cosh$ denotes hyperbolic cosine and $\sinh$ denotes...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Sinh of a sum|next=findme}}: $4.5.25$
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Sinh of a sum|next=Tanh of a sum}}: $4.5.25$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 22:39, 21 October 2017

Theorem

The following formula holds: $$\cosh(z_1+z_2) = \cosh(z_1)\cosh(z_2) + \sinh(z_1)\sinh(z_2),$$ where $\cosh$ denotes hyperbolic cosine and $\sinh$ denotes hyperbolic sine.

Proof

References