Difference between revisions of "Cosh of a sum"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\cosh(z_1+z_2) = \cosh(z_1)\cosh(z_2) + \sinh(z_1)\sinh(z_2),$$ where $\cosh$ denotes hyperbolic cosine and $\sinh$ denotes...") |
|||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Sinh of a sum|next= | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Sinh of a sum|next=Tanh of a sum}}: $4.5.25$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 22:39, 21 October 2017
Theorem
The following formula holds: $$\cosh(z_1+z_2) = \cosh(z_1)\cosh(z_2) + \sinh(z_1)\sinh(z_2),$$ where $\cosh$ denotes hyperbolic cosine and $\sinh$ denotes hyperbolic sine.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.5.25$