Difference between revisions of "Halving identity for tangent (1)"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\tanh \left( \dfrac{z}{2} \right) = \sqrt{ \dfrac{\cosh(z)-1}{2} },$$ where $\tanh$ denotes hyperbolic tangent and $\cosh$...") |
(No difference)
|
Revision as of 22:47, 21 October 2017
Theorem
The following formula holds: $$\tanh \left( \dfrac{z}{2} \right) = \sqrt{ \dfrac{\cosh(z)-1}{2} },$$ where $\tanh$ denotes hyperbolic tangent and $\cosh$ denotes hyperbolic cosine.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.5.30$
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.5.30$