Difference between revisions of "Struve function"
From specialfunctionswiki
Line 4: | Line 4: | ||
<div align="center"> | <div align="center"> | ||
<gallery> | <gallery> | ||
+ | File:Struveh0plot.png|Struve $\mathbf{H}_0$. | ||
+ | File:Struveplots.png|Various Struve functions. | ||
File:Struvefunctions(abramowitzandstegun).png|Struve functions from Abramowitz&Stegun. | File:Struvefunctions(abramowitzandstegun).png|Struve functions from Abramowitz&Stegun. | ||
</gallery> | </gallery> |
Revision as of 00:15, 22 October 2017
The Struve functions are defined by $$\mathbf{H}_{\nu}(z)=\left(\dfrac{z}{2}\right)^{\nu+1} \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k\left(\frac{z}{2}\right)^{2k}}{\Gamma(k+\frac{3}{2})\Gamma(k+\nu+\frac{3}{2})}.$$
Properties
Relationship between Struve function and hypergeometric pFq
Relationship between Weber function 0 and Struve function 0
Relationship between Weber function 1 and Struve function 1