Difference between revisions of "Integral representation of Struve function (2)"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds for $\mathrm{Re}(\nu)>-\dfrac{1}{2}$: $$\mathbf{H}_{\nu}(z) = \dfrac{z^{\nu}}{2^{\nu-1}\sqrt{\pi}\Gamma(\nu+\frac{1}{2})} \displaystyle...") |
(No difference)
|
Latest revision as of 16:14, 4 November 2017
Theorem
The following formula holds for $\mathrm{Re}(\nu)>-\dfrac{1}{2}$: $$\mathbf{H}_{\nu}(z) = \dfrac{z^{\nu}}{2^{\nu-1}\sqrt{\pi}\Gamma(\nu+\frac{1}{2})} \displaystyle\int_0^{\frac{\pi}{2}} \sin(z \cos(\theta)) \sin^{2\nu}(\theta) \mathrm{d}\theta,$$ where $\mathbf{H}$ denotes the Struve function, $\pi$ denotes pi, $\Gamma$ denotes gamma$, $\sin$ denotes sine, and $\cos$ denotes cosine.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $12.1.7$