Difference between revisions of "Relationship between Chebyshev T and Gegenbauer C"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$T_n(x)=\dfr...") |
|||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds for $m,n \in \{0,1,2,\ldots\}$: | |
$$T_n(x)=\dfrac{n}{2} \displaystyle\lim_{\lambda \rightarrow 0} \dfrac{C_n^{\lambda}(x)}{\lambda}; n\geq 1,$$ | $$T_n(x)=\dfrac{n}{2} \displaystyle\lim_{\lambda \rightarrow 0} \dfrac{C_n^{\lambda}(x)}{\lambda}; n\geq 1,$$ | ||
− | where $T_n$ denotes a [[Chebyshev T]] | + | where $T_n$ denotes a [[Chebyshev T|Chebyshev polynomial of the first kind]] and $C_n^{\lambda}$ denotes a [[Gegenbauer C]] polynomial. |
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Revision as of 22:33, 19 December 2017
Theorem
The following formula holds for $m,n \in \{0,1,2,\ldots\}$: $$T_n(x)=\dfrac{n}{2} \displaystyle\lim_{\lambda \rightarrow 0} \dfrac{C_n^{\lambda}(x)}{\lambda}; n\geq 1,$$ where $T_n$ denotes a Chebyshev polynomial of the first kind and $C_n^{\lambda}$ denotes a Gegenbauer C polynomial.