Difference between revisions of "E(m)=(pi/2)2F1(-1/2,1/2;1;m)"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$E(m) = \dfrac{\pi}{2} {}_2F_1 \left( - \dfrac{1}{2}, \dfrac{1}{2};1;m \right),$$ where $E$ denotes Elliptic E, $\pi$ denotes p...") |
(No difference)
|
Latest revision as of 04:52, 21 December 2017
Theorem
The following formula holds: $$E(m) = \dfrac{\pi}{2} {}_2F_1 \left( - \dfrac{1}{2}, \dfrac{1}{2};1;m \right),$$ where $E$ denotes Elliptic E, $\pi$ denotes pi, and ${}_2F_1$ denotes hypergeometric2F1.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $17.3.10$