Difference between revisions of "Q-Pochhammer"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "$$(a;q)_n=\displaystyle\prod_{j=0}^{n-1} (1-aq^k)$$ $$(a;q)_{\infty} = \displaystyle\prod_{j=0}^{\infty} (1-aq^k)$$")
 
Line 1: Line 1:
$$(a;q)_n=\displaystyle\prod_{j=0}^{n-1} (1-aq^k)$$
+
$$(a;q)_n=\dfrac{(a;q)_{\infty}}{(aq^n;q)_{\infty}}\stackrel{n \in \mathbb{Z}^+}{=} \displaystyle\prod_{j=0}^{n-1} (1-aq^k)$$
 
$$(a;q)_{\infty} = \displaystyle\prod_{j=0}^{\infty} (1-aq^k)$$
 
$$(a;q)_{\infty} = \displaystyle\prod_{j=0}^{\infty} (1-aq^k)$$

Revision as of 07:05, 27 July 2014

$$(a;q)_n=\dfrac{(a;q)_{\infty}}{(aq^n;q)_{\infty}}\stackrel{n \in \mathbb{Z}^+}{=} \displaystyle\prod_{j=0}^{n-1} (1-aq^k)$$ $$(a;q)_{\infty} = \displaystyle\prod_{j=0}^{\infty} (1-aq^k)$$