Difference between revisions of "Q-Gamma"
From specialfunctionswiki
(Created page with "Let $0<q<1$. Define $$\Gamma_q(x) = \dfrac{(q;q)_{\infty}}{(q^x;q)_{\infty}}(1-q)^{1-x},$$ where $(\cdot;\cdot)_{\infty}$ denotes the q-Pochhammer symbol. =References= As...") |
(No difference)
|
Revision as of 07:08, 27 July 2014
Let $0<q<1$. Define $$\Gamma_q(x) = \dfrac{(q;q)_{\infty}}{(q^x;q)_{\infty}}(1-q)^{1-x},$$ where $(\cdot;\cdot)_{\infty}$ denotes the q-Pochhammer symbol.
References
Askey, Richard . The q-gamma and q-beta functions. Applicable Anal. 8 (1978/79), no. 2, 125--141.