Difference between revisions of "Q-zeta"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The $q$-zeta function $\zeta_q \colon \mathbb{C} \times (0,1] \rightarrow \mathbb{C}$ by $$\zeta_q(z,x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{q^{-k}}{(q^{-k}[k]+x)^z},$$ whe...")
 
Line 7: Line 7:
  
 
=References=
 
=References=
 +
* {{PaperReference|q-Dedekind type sums related to q-zeta function and basic L-series|2006|Yilmaz Simsek|prev=findme|next=findme}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 17:44, 11 February 2018

The $q$-zeta function $\zeta_q \colon \mathbb{C} \times (0,1] \rightarrow \mathbb{C}$ by $$\zeta_q(z,x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{q^{-k}}{(q^{-k}[k]+x)^z},$$ where $[k]$ denotes a $q$-number.

Properties

References