Difference between revisions of "Dedekind eta"
From specialfunctionswiki
(→Properties) |
|||
Line 10: | Line 10: | ||
=Properties= | =Properties= | ||
+ | [[eta(z+1)=e^(i pi/12)eta(z)]]<br /> | ||
+ | [[eta(-1/z)=sqrt(-iz)eta(z)]]<br /> | ||
=References= | =References= |
Revision as of 05:17, 12 February 2018
Let $q=e^{2\pi i \tau}$. We define the Dedekind eta function by the formula $$\eta(\tau) = e^{\frac{\pi i \tau}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$
Properties
eta(z+1)=e^(i pi/12)eta(z)
eta(-1/z)=sqrt(-iz)eta(z)
References
A collection of over 6200 identities for the Dedekind Eta Function