Difference between revisions of "Modular form"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "A modular form of weight $k$ for $\mathrm{SL}(2,\mathbb{Z})$ is a function $f \colon \mathbb{H} \rightarrow \mathbb{C}$, where $\mathbb{H}$ is a the upper half-plane that sati...")
(No difference)

Revision as of 03:19, 26 February 2018

A modular form of weight $k$ for $\mathrm{SL}(2,\mathbb{Z})$ is a function $f \colon \mathbb{H} \rightarrow \mathbb{C}$, where $\mathbb{H}$ is a the upper half-plane that satisfies three conditions:

  1. $f$ is holomorphic on $\mathbb{H}$,
  2. for any $z \in \mathbb{H}$ and $\begin{bmatrix} a&b \\ c&d \end{bmatrix} \in \mathrm{SL}(2,\mathbb{Z})$,

$$f \left( \dfrac{az+b}{cz+d} \right) = (cz+d)^k f(z),$$ and

  1. $f$ is holomorphic at the cusp

Properties

References