Difference between revisions of "B(x,y+1)=(y/x)B(x+1,y)"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$B(x,y+1)=\dfrac{y}{x} B(x+1,y),$$ where $B$ denotes the beta function. ==Proof== ==References== * {{BookReference|Higher Trans...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=Beta as product of gamma functions|next=B(x,y+1)=(y/(x+y))B(x,y)}}: $\S 1.5 (6)$
+
* {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=Beta as product of gamma functions|next=B(x,y+1)=(y/(x+y))B(x,y)}}: $\S 1.5 (6)$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 20:58, 3 March 2018

Theorem

The following formula holds: $$B(x,y+1)=\dfrac{y}{x} B(x+1,y),$$ where $B$ denotes the beta function.

Proof

References