Difference between revisions of "0F1(;r;z)0F1(;r;-z)=0F3(r,r/2,r/2+1/2;-z^2/4)"
From specialfunctionswiki
Line 6: | Line 6: | ||
==References== | ==References== | ||
− | * {{BookReference|Higher Transcendental Functions Volume I|1953| | + | * {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=0F1(;r;z)0F1(;s;z)=2F1(r/2+s/2, r/2+s/2-1/2;r,s,r+s-1;4z)|next=2F0(a,b;;z)2F0(a,b;;-z)=4F1(a,b,a/2+b/2,a/2+b/2+1/2;a+b;4z^2)}}: $4.2 (3)$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 23:25, 3 March 2018
Theorem
The following formula holds: $${}_0F_1(;r;z){}_0F_1(;r;-z)={}_0F_3\left( ;r, \dfrac{r}{2}, \dfrac{r}{2} + \dfrac{1}{2}; - \dfrac{z^2}{4} \right),$$ where ${}_0F_1$ denotes hypergeometric 0F1 and ${}_0F_3$ denotes hypergeometric 0F3.
Proof
References
- 1953: Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger and Francesco G. Tricomi: Higher Transcendental Functions Volume I ... (previous) ... (next): $4.2 (3)$