Difference between revisions of "Bessel J"

From specialfunctionswiki
Jump to: navigation, search
(References)
 
Line 47: Line 47:
 
=References=
 
=References=
 
* {{BookReference|A Treatise on Bessel Functions|1895|Andrew Gray|author2=G.B. Mathews|prev=findme|next=findme}}: Ch. 2 $10$
 
* {{BookReference|A Treatise on Bessel Functions|1895|Andrew Gray|author2=G.B. Mathews|prev=findme|next=findme}}: Ch. 2 $10$
* {{BookReference|Higher Transcendental Functions Volume II|1953|Harry Bateman|prev=findme|next=findme}}: $\S 7.2.1 (2)$
+
* {{BookReference|Higher Transcendental Functions Volume II|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=findme|next=findme}}: $\S 7.2.1 (2)$
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=findme}}: $9.1.10$
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=findme}}: $9.1.10$
  

Latest revision as of 05:41, 4 March 2018

The Bessel functions of the first kind, $J_{\nu} \colon \mathbb{C} \rightarrow \mathbb{C}$ are defined by $$J_{\nu}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{k! \Gamma(k+\nu+1)2^{2k+\nu}}z^{2k+\nu},$$ where $\Gamma$ denotes the gamma function.

Properties

Bessel polynomial in terms of Bessel functions
Bessel at n+1/2 in terms of Bessel polynomial
Bessel at -n-1/2 in terms of Bessel polynomial
Relationship between Bessel J and hypergeometric 0F1
Relationship between Bessel I and Bessel J
Relationship between Anger function and Bessel J
Derivative of Bessel J with respect to its order
Integral of monomial times Bessel J
Integral of Bessel J for Re(nu) greater than -1
Integral of Bessel J for nu=2n
Integral of Bessel J for nu=2n+1
Integral of Bessel J for nu=n+1
Integral of Bessel J for nu=1

Videos

Bessel Equation and Bessel functions
Mod-1 Lec-6 Bessel Functions and Their Properties-I
Bessel's Equation by Free Academy
Taylor Series, Bessel, single Variable Calculus, Coursera.org
Ordinary Differential Equations Lecture 7—Bessel functions and the unit step function
Laplace transform of Bessel function order zero
Laplace transform: Integral over Bessel function is one
Orthogonal Properties of Bessel Function, Orthogonal Properties of Bessel Equation

External Links

Addition formulas for Bessel functions by John D. Cook
Relations between Bessel functions by John D. Cook
Bessel's functions of the second order - C.V. Coates

References


Bessel functions