Difference between revisions of "Arcsin cdf"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The arcsin cumulative distribution function $F \colon [0,1] \rightarrow \mathbb{R}$ is given by $$F(x) = \dfrac{2}{\pi} \arcsin\left(\sqrt{x} \right),$$ where $\pi$ denot...")
 
 
Line 1: Line 1:
 
The arcsin [[cumulative distribution function]] $F \colon [0,1] \rightarrow \mathbb{R}$ is given by  
 
The arcsin [[cumulative distribution function]] $F \colon [0,1] \rightarrow \mathbb{R}$ is given by  
$$F(x) = \dfrac{2}{\pi} \arcsin\left(\sqrt{x} \right),$$
+
$$F(x) = \left\{ \begin{array}{ll}
 +
0, & \quad x<0 \\
 +
\dfrac{2}{\pi} \arcsin\left(\sqrt{x} \right), & \quad 0 \leq x \leq 1 \\
 +
1, & \quad x>1,
 +
\end{array} \right.$$
 
where $\pi$ denotes [[pi]] and $\arcsin$ denotes [[arcsin]].
 
where $\pi$ denotes [[pi]] and $\arcsin$ denotes [[arcsin]].
  

Latest revision as of 03:35, 12 March 2018

The arcsin cumulative distribution function $F \colon [0,1] \rightarrow \mathbb{R}$ is given by $$F(x) = \left\{ \begin{array}{ll} 0, & \quad x<0 \\ \dfrac{2}{\pi} \arcsin\left(\sqrt{x} \right), & \quad 0 \leq x \leq 1 \\ 1, & \quad x>1, \end{array} \right.$$ where $\pi$ denotes pi and $\arcsin$ denotes arcsin.

Properties

See also

Arcsin pdf

References